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Basic neurophysiological research with monkeys has shown how
neurons in the motor cortex have firing rates tuned to movement
direction. This original finding would have been difficult to
uncover without the use of a behaving primate paradigm in which
subjects grasped a handle and moved purposefully to targets in
different directions. Subsequent research, again using behaving
primate models, extended these findings to continuous drawing
and to arm and hand movements encompassing action across
multiple joints. This research also led to robust extraction algo-
rithms in which information from neuronal populations is used to
decode movement intent. The ability to decode intended move-
ment provided the foundation for neural prosthetics in which
brain-controlled interfaces are used by paralyzed human subjects
to control computer cursors or high-performance motorized
prosthetic arms and hands. This translation of neurophysiological
laboratory findings to therapy is a clear example of why using
nonhuman primates for basic research is valuable for advancing
treatment of neurological disorders. Recent research emphasizes
the distribution of intention signaling through neuronal popula-
tions and shows how many movement parameters are encoded
simultaneously. In addition to direction and velocity, the arm’s
impedance has now been found to be encoded as well. The ability
to decode motion and force from neural populations will make it
possible to extend neural prosthetic paradigms to precise interac-
tion with objects, enabling paralyzed individuals to perform many
tasks of daily living.

motor control | motor cortex | arm movement | kinematics | impedance

Neurons across many brain areas have firing rates that are
modulated during physical interactions with the world. There

is increasing evidence that the control mechanisms for movement
are highly distributed throughout the nervous system. Neurosci-
entists have begun to use techniques that sample this widespread
activity for brain-controlled interfaces that enable people who are
paralyzed to move prosthetic limbs. These advances are based on
studies in which monkeys made human-like movements, such as
reaching, grasping, and even drawing. By combining “encoded”
information from the firing rates of scores of neurons, investigators
were able to construct extraction algorithms for “decoding” mo-
tion details from neural activity. Subsequently, these extraction
algorithms were adapted so that a monkey’s intention could be
transformed to actual movement without a perceptible time
lag, making it possible to operate a robotic arm and hand in
real time. These studies formed the foundation for the use of
brain-controlled interface technology by paralyzed human subjects,
who have been able to control prosthetic limbs intuitively, with
near-natural coordination and agility, to perform some tasks of
daily living. Here, we review advances in brain-controlled inter-
faces for arm movement and discuss current efforts to establish
control during hand–object interaction. Specifically, results are
presented showing that context-dependent limb stiffness can be
decoded from motor cortical activity, in much the same way that
motion details were extracted in previous studies. These results,
based on activity collected from populations of neurons, are fur-
ther evidence of distributed processing in which multiple signals
drive many individual neurons.

Decoding Movement Activity in the Motor Cortex
Arm-reaching paradigms with nonhuman primates have been used
successfully over the last 40 y to develop population-based ap-
proaches for extracting detailed information related to the control
of these volitional movements. In the primary motor cortex, as well
as in other motor-related cortical regions, the firing rates of many
neurons are modulated together as reaching takes place. A major
factor driving the modulation of these rates is the direction of arm
movement. In 1982, Apostolos Georgopoulos published his first
paper (1) describing how motor cortical firing rates were modulated
when monkeys made reaching movements in different directions
(Fig. 1A). Monkeys performed a center-out task, by moving their
hands from a center start position to 1 of 8 radially arranged tar-
gets. Since the targets were equally spaced around a circle, the
movement directions were sampled uniformly, and these directions
were the primary parameter that varied in the experiment. The
firing rates of individual motor cortical neurons were recorded as
the movements were made. By plotting the average firing rate
during the movement against movement direction, each neuron’s
activity could be modeled as a cosine tuning function (Fig. 1C).
The equation that describes this cosine tuning is

FR = b0 + bxX + byY , [1]

where FR is the mean firing rate during the movement, averaged
across trials to the same target. X and Y are the components of a
unit vector pointing in the direction of movement. Multiple re-
gression is used to find b0, bx, and by. The tuning function describes
how movement direction is encoded in a single neuron’s firing
rate. The cosine function implies that a neuron has a “preferred
direction,” a combination of behavioral variables that corresponds
to the maximal firing rate. In Fig. 1, these variables would be the x
and y components of a vector that points to 90°. For movements
away from the preferred direction, the neuron’s firing rate
decreases smoothly.
The tuning principle can be visualized in terms of 2 vectors, ~M

for movement direction and~B that points in the preferred direction
of a neuron (Fig. 2). From Eq. 1, ~M is composed of X and Y and ~B
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has components bx and by. In a particular movement direction, the
length of ~B (corresponding to the neuron’s firing rate) will be
proportional to the cosine of the angle between the neuron’s
preferred direction and the direction the arm is moving. A con-
ceptual advantage of the vector cartoon is that, although the di-
mensions of the 2 vectors (~B and ~M in Fig. 2) will increase with
the number of modeled variables, the equation itself always has the
same form. This feature has proven useful for extending the
original 2-dimensional (2D) encoding models to 3 dimensions of
armmovement, 3 dimensions of wrist movement, and 4 dimensions
of hand shape (2–4), so that a total of 10 movement variables could
be shown to be encoded in a single neuron’s firing rate.
The vector concept is also useful for decoding neural activity.

Decoding predicts movement direction from the observed firing
rates. Note that decoding is the inverse of encoding, in which firing
rates are predicted from movement. It might appear that decoding
could be carried out with a single neuron if its tuning function was
known. Decoding seemingly could be carried out by finding the
movement direction on the tuning curve that matches the observed
firing rate of the neuron. However, a single firing rate maps to 2
directions on the cosine function (except in the preferred di-
rection). This redundancy, combined with the broad cosine tuning
curve’s being susceptible to large changes in direction for a small
amount of noise in the firing rate, makes single-neuron decoding
unfeasible. On the other hand, the broad tuning (the cosine covers
the entire directional domain) means that every cosine-tuned
neuron is encoding direction simultaneously. Therefore, a decod-
ing process, based on a large sample of tuned neurons, can miti-
gate the redundancy and noise susceptibility problem of a single
tuning function. A simple decoder—the “population vector algo-
rithm”—provided a robust readout of movement direction from a
sampled population of recorded single-unit activity (5). For each
neuron in the population, a preferred direction was found and
represented with a vector, ~B (Fig. 2). The mean firing rate of each
unit during the movement was used to adjust the length of~B. Note
that the cosine tuning model says that this firing rate is pro-
portional to the cos θ, but for building the population vector, the
actual firing rates are used. A sum of these contributions (one
weighted ~B per neuron in the population) was taken, and the di-
rection of the resultant population vector was found to point in the
predicted direction of movement. Population vectors were built for
each direction of movement in the center-out task.
Initially, the mean firing rate during each center-out move-

ment trial was used both to calculate each neuron’s preferred
direction and to adjust the length of each contribution to the
population vector. In later studies (6–10) the decoder was
modified so that, although the mean rate was still used in the
encoder to find each neuron’s preferred direction, instantaneous
firing calculated in bins of 10 to 20 ms was used in the decoder to
extract direction. This modified algorithm resulted in a time
series of population vectors during each trial. In addition to the
vectors pointing in the direction of movement, it turned out that
their lengths matched the time-varying speed of the hand during
the task. When the vectors of the time series were connected tip
to tail, the resulting path matched the actual trajectory of the
arm. The emergence of speed from the population vector algo-
rithm turned out to be due to the nonlinear encoding of speed
and direction within single neurons (11, 12). Nevertheless, the
emergence of speed from the decoder was fortuitous because it
means that the population vector represents hand velocity; it
predicts the instantaneous direction and speed of the hand so
that the hand’s trajectory can be predicted from neural activity.
In practical terms, the population vectors can be used to show
where the hand will be ∼150 ms later. The arm’s movement can
be predicted continuously.
Trajectory prediction using the population vector algorithm

was demonstrated with monkeys trained to trace different shapes

Fig. 1. Directional tuning. (A) Center-out task. Monkeys were trained to grasp
the end of a manipulandum and capture a light embedded in the table top, by
moving the site circle over the light. The task began by capturing the center
light. This light was extinguished as 1 of 8 peripheral target positions was il-
luminated. The monkey had to quickly move and capture that light then hold
still until a reward was administered. Reprintedwith permission from ref. 59. (B)
Unitary firing of motor cortical neurons was isolated with a single, moveable
microelectrode. The firing of an example unit is displayed as rasters arranged in
a circle corresponding to the direction the manipulandum was moved during
the task. Each tick mark is placed at the time an action potential occurred
during the trial (time = 0 was when the movement began; “T” is when the
peripheral target appeared). There were 5 trials to each target, with firing rates
during those trials represented on different lines of the rasters. Reprinted with
permission from ref. 5. (C) Firing rates over the duration and across trials were
averaged and plotted as a function of movement direction. Vertical bars are the
SDs across trials. The data were fit with a cosine function having a preferred
direction (direction with the highest firing rate) of ∼0°. Reprinted with per-
mission from ref. 5.
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with their fingers. Monkeys repeatedly drew figures as different
individual neural units were recorded. When enough data were
collected, a time series of population vectors was calculated and
used to construct predicted trajectories. These predictions closely
matched the actual drawn figures (6–8, 10). In addition to re-
covering the shape of the figures, because velocity was extracted
accurately, the psychophysical kinematic details of the movement
could be recovered as well. These features, originally described
from human drawing studies, included figural segmentation and
the 2/3 power law (10). The extracted signal reflected high-level
details consonant with natural features of behavior.
A number of laboratories in the late 1990s and early 2000s

worked to develop brain-controlled interfaces in primates by
decoding motor cortical activity. Some of these studies merely
decoded ongoing arm movement (13, 14), while others used the

recorded signals to move cursors in a computer display (15, 16).
The essential elements used in this method were the use of
chronically implanted, intracortical, microelectrode arrays and
the ability to process the recorded signals quickly so that there
was no noticeable lag between the subject’s movement intention
and the displayed movement. Our motivation at this time was to
decode intended 3-dimensional (3D) arm movement as contin-
uous trajectories. Population vector decoding was used to extract
intended velocity to produce smooth, accurate, and robust tra-
jectories (15). Monkeys with microwire electrode arrays implan-
ted in their motor cortices were trained to move a cursor in a
virtual-reality, 3D computer display to targets arranged to appear
at the corners of a cube (3D center-out task). The task was first
learned by monkeys moving their arms through space while
viewing the virtual display, with the cursor locked to a marker
on the hand. After the monkeys learned this “hand control” task,
the motion of the cursor was unlinked from the hand marker
and controlled by the real-time decoded brain signal (“brain
control”). Since the movements were in 3D space, the tuning-
equation vectors were now 3D, but otherwise the encoding and
decoding operations were the same as in the 2D case. The
monkeys readily learned this brain-control task and were able to
move the cursor with nearly the same performance as that achieved
with hand control.
In subsequent experiments, the brain-controlled interface

experiment was elaborated by having monkeys use the decoded
signal to move a robotic arm. In these and later experiments,
we began using 96-site Utah electrode arrays (UEA) instead of
microwire electrodes for chronic intracortical recording. Using
4-dimensional decoding (x-y-z position in space and opening
and closing a pincer), monkeys were able to operate a robot to
reach, grasp a piece of food, and bring it to their mouths in a
self-feeding paradigm (17). Robotic performance was increased by
adding a 3D wrist to the robot, increasing the decoding to 7
dimensions (x-y-z transport, yaw, pitch, and roll of the wrist,
and open-closing of a hand), and requiring the monkey subjects
to reach, orient, and close a robot hand on a cylindrical object
(18). Ultimately, monkeys were trained to reach and grasp a
large variety of objects while the velocities of their arms, hands,
and fingers were tracked. Their hand shapes were described
with 4 principal components. A tuning function composed of 10
factors (x-y-z transport, yaw, pitch, and roll of the wrist, and 4
hand shape factors) was used to build 10-dimensional pop-
ulation vectors which accurately represented all 10 simulta-
neous movement factors (3, 19).
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Fig. 3. Ballistic-release paradigm. (A) To initiate a trial, the monkey first pressed the start button (to the monkey’s right) and then grasped the handle. The
handle was pulled while it was locked in place until the force threshold was crossed. It was then unlocked to move freely along the track. To be successful, the
monkey had to stop and hold the handle within the target zone for 300 ms. (B) Time plot of force and position a single trial. The vertical line at time 0 is when
the handle was released. (C) Sixteen task conditions were composed of 4 force thresholds and 4 target zones.

cos
Fig. 2. Vector description of cosine tuning A vector, ~B, points in the pre-
ferred direction and has a magnitude equal to the maximum firing rate of
the neuron. ~M is a vector in the direction of arm movement with compo-
nents of X and Y and a magnitude of 1. θ is the angle between the preferred
direction and the direction of movement. A projection of ~M onto ~B shortens
the length of ~B (superimposed blue vector), which now has a magnitude of�
�
�~B
�
�
�cos θ. The length of the projection is proportional to the firing rate of the

neuron when the arm moves at an angle θ from the preferred direction.
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Demonstrations in Human Subjects
Having demonstrated our ability to carry out the high-performance
prosthetic control using a brain-controlled interface, we began
an experiment with quadriplegic human subjects. The idea was
for them to operate a prosthetic arm and hand to regain the
functionality of their upper extremities lost to paralysis. In 2012,
we began our experiment with Jan Scheuermann, who had been
quadriplegic for 12 y. Two UEA microelectrode arrays were
implanted in her left motor cortex. Thirteen weeks after the im-
plantation, she was able to perform 7 degree-of-freedom (DOF)
movements with the Modular Prosthetic Arm (20). This meant she
was able to move a prosthetic hand to arbitrary positions in a 3D
work space, orient the hand using a 3D wrist, and open and close
the hand to grasp objects (21). In addition to spontaneous, in-
tuitive reaching and grasping, Jan performed standardized reach-
to-grasp exercises and showed steady improvement, so that these
tasks were performed reliably with near-normal coordination.
With additional training, she was able to add hand shaping to her
repertoire, effectively controlling 10 DOF simultaneously (4).
In 2015, another quadriplegic participant, Nathan Copeland,

was implanted with chronic microelectrode arrays. In addition to
the 2 UEAs in his motor cortex for recording movement-related
signaling, 2 additional arrays were placed in the hand area of his
primary sensory motor cortex. These electrodes were used to
elicit the sensation of pressure in his fingers, by passing micro-
amp currents through the electrodes. The evoked sensations could

be linked to pressure sensors in the fingertips of the prosthetic
hand so that he can potentially “feel” the hand make contact with
external objects (22).
These demonstrations showed that signals extracted with

population decoding were robust enough to control many aspects
of natural arm and hand movement. Over the last 20 y, a number
of decoders based on large samples of single-unit firing rates
have been developed. Most of those used in actual brain-controlled
interface demonstrations have been “linear,” in that they follow
the general type of equation described in Eq. 1, or make use of
the cosine relation between movement direction and firing rate
(15, 23–28). New decoders using machine-learning techniques
may be useful when encoding models of neural activity are non-
linear (12, 29). Recent techniques based on neuron–neuron cor-
relation may be especially promising because they extract latent
input to a recorded population without relying on the presence
of parameter tuning (30, 31). The new decoders, combined with
new microelectrode recording technology, may dramatically in-
crease the number of single units that can be recorded simulta-
neously (32–35). However, it should be noted that useful behaviors
such as drinking with a straw have been demonstrated with as few
as 2 or 3 DOF (36), showing that even a rudimentary control signal
can be useful.
Our ultimate goal is to decode and generate a full repertoire

of lost movement that is intuitive, with characteristics that match
those produced naturally by subjects with intact motor abilities.
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Accomplishment of this goal not only will require controlling the
motion of the arm, hand, and fingers as they move through space
but necessitates additional control of the arm and hand to con-
tact and manipulate physical objects. This control encompasses
tactile sensation and the precise regulation of force. Both of
these are objectives of our current research program, as we de-
scribe in further detail later.

Decoding Impedance, or “Stiffness”
Most of the demonstrated tasks performed to date with brain-
controlled interfaces relied almost entirely on the transport,
orientation, and shaping of the hand taking place in free space.
However, truly dexterous behavior requires the application of
force in the correct amount, in the proper direction, and at specific
locations on an object. The coordination of force and motion is
captured in the mechanical parameter of impedance. Impedance
can be thought of as the force resisting a displacement. When the
hand is used to move an object, the moving object generates force
back on the hand. Conversely, when force is applied to an object,
that object will move in a particular manner. Prior knowledge of
how an object will react to displacement and the application of
force is a clear control requirement for action planning. This
constraint has led to a movement control theory based on im-
pedance (37). Impedance control is likely important for instances
in which displacement and/or force changes so rapidly that feed-
back would be ineffective. As examples, consider what can happen
at the onset of a reach when rapid movement of the arm is con-
sidered ballistic (38, 39) or upon initial contact of the hand with an
object where large, rapid changes in force take place. In the latter
situation, setting the impedance, or stiffness, of the hand before
object contact could lead to effective displacement of the fingers

and hand to help complete the task. Passive mechanics can be used
as a means of control.
We used a ballistic-release task to determine whether a similar

strategy—the presetting of mechanical impedance—could be used
to control the arm when feedback of the movement would be in-
effective. In an initial study (40), human subjects were seated in
front of a computer monitor. They used their right arm to pull a
handle along a horizontal track. The handle was locked in its start
position with a strong magnet and released when 1 of 4 threshold
forces was reached. Once released, the subjects were required to
stop the handle in 1 of 4 position zones indicated on the computer
monitor. Although the handle position and target zone were cued
on the computer monitor, there was no display of force. A total of
16 force level/target position combinations were presented in
blocks. This design was used to allow the subjects to anticipate a
given combination. Repeats of release at the same force threshold
and specified target distance made it possible for the subject to
form an approximate prediction of the stiffness required for their
arm to stop in the target zone. The idea was that subjects would
cocontract their arm muscles to form a virtual spring. With the
correct stiffness, their arm’s motion would be arrested at the
equilibrium position of this spring. This strategy would not require
online feedback control and would be particularly effective in the
fast transition following handle release.
This general idea, using antagonist muscles to form virtual

springs about a joint, was proposed years ago by Anatol Feldman
and was termed the “equilibrium-point hypothesis” (41, 42). Al-
though this model may have limited, general applicability to arm
movement (43), in special situations, such as ballistic-release, this
type of strategy may be employed. Indeed, the results from our
experiments with human subjects are consistent with this strategy.

Fig. 5. Example firing rates units tended to be modulated with a general relation to motion (Top), force (Middle), or a combination of force and motion
(Bottom). Shading represents the median and 95% confidence interval. Each response is labeled according to the recording channel and the sorted unit on
that channel (channel-unit).
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Coactivation of muscles that produced counteracting forces was
found to be a major factor in setting this stiffness.
Having shown that human subjects adopted an impedance

control strategy for the ballistic-release paradigm, we trained
monkeys to perform the same task (Fig. 3). The experimental
paradigms and use of nonhuman primates was thoroughly reviewed
and approved by the Institutional Animal Care and Use Committee
at the University of Pittsburgh. Once again the experimental de-
sign consisted of 16 combinations of 4 target zones and 4 force
thresholds (Fig. 3C). Ten recording sessions were analyzed for
each monkey.
Following the approach of the human experiments (40), 2 dif-

ferent calculations were used to find stiffness. In the first method,
stiffness and damping were calculated using a physical dynamical
model with the parameters of time-varying force, displacement,
and velocity in the 350 ms following handle release. This was a
measurement of the stiffness after the handle was released. In the
second method stiffness was calculated at the instant of handle
release, simply as the ratio of force produced by the subject to
release the handle to the distance the handle was moved. The
results of these 2 methods are plotted in the panels at the top of
Fig. 4. Note that the stiffness traces are clearly separable by the 16
conditions. Furthermore, the 2 stiffness calculations gave consis-
tent values across the data (compare the solid to the dashed
stiffness traces). This finding suggests that stiffness at the begin-
ning of the movement was essentially the same as that during the
movement. This, and the finding that stiffness varied by task
condition, shows that an impedance control strategy was used. The
animals adapted the same strategy as human subjects: They ad-
justed the stiffness of their arms so that when the handle was re-
leased suddenly it would stop at the specified distance.

Motor cortical single-unit activity was recorded from 2 monkeys
using UEAs (Blackrock Microsystems) on the precentral gyrus and
Matrix (NeuroNexus) probes in the anterior bank of the central
sulcus. Muscle activity (electromyography) was collected using
epimysial electrodes chronically implanted on 15 arm and hand
muscles (monkey S) or with surface recordings of 16 muscles
(monkey I). Neural analysis was used to determine whether stiff-
ness was encoded in the activity of motor cortical neurons and
whether this could be decoded to extract stiffness from this brain
structure.
An average of 105 single units from monkey S and 42 from

monkey I were recorded simultaneously during each recording
session. A total of 213 different units from monkey S and 101
from monkey I were recorded over the 10 complete sessions.
Firing rates were calculated in 10-ms time bins aligned to the
handle release, smoothed using a 30-ms Gaussian filter, and trial-
averaged for each of the 16 behavioral conditions. Firing rate
histograms from 6 example units are shown in Fig. 5. Many of the
units had task-related patterns of modulation.
In order to determine whether stiffness was represented in the

firing rates of these units with a relation that is similar to that
found for kinematics, we tested a cosine tuning function of the
form used in Eq. 1:

FR = b0 + bFF + bDD. [2]

For this experiment, F is the force exerted to release the handle,
D is the distance the hand traveled (the position value 630 ms
after handle release), and FR is the mean firing rate over the first
600 ms of each trial, averaged across trials of the same condition.
Tuning was assessed by fitting the regression model (Eq. 2) to
combinations of the force and displacement for each trial. The
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force and displacement data were scaled so the 16 values of each
ranged between 0 and 1. Using the vector formulation of this
equation (Fig. 2), the preferred direction, ~B, with components of
bF and bD, corresponds to a vector pointing to the preferred
stiffness. ~M has components of force and displacement instead
of X and Y. The number of tuned neurons over the 10 experi-
mental sessions for each monkey ranged from 32 to 54 for mon-
key S and from 21 to 48 for monkey I. For a neuron’s response to
be considered tuned, R2 > 0.1 (goodness of fit from Eq. 2) and
bF>0.01. The regression coefficients from the tuned units are
displayed in the top panel of Fig. 6. The directions of the pre-
ferred direction vectors,~B= bFbD, for each monkey are displayed
in the bottom panel of Fig. 6. In this model, the preferred direction
of each neuron’s response is tan−1~B= bF=bD

and can be considered
its “preferred stiffness.” There was a bias along the displacement
axis for monkey S, while for monkey I the distribution was biased
in the positive force direction.
For each experimental session, the tuned units were used to

build population vectors. The population vectors were calculated
using optimal linear estimation (OLE) (25, 26). These vectors
have 2 dimensions, force and displacement, and their ratio is the
predicted stiffness extracted from the recorded population. Re-
sults collated across all 10 experimental sessions are shown in
Fig. 7. Across individual sessions, the correlation coefficients for
monkey S ranged from 0.87 to 0.98 and for monkey I from 0.71
to 0.93. These results show that stiffness can be extracted accu-
rately from a population of motor cortical units using the same
methodology for extracting arm velocity (44).

Discussion
The functional and anatomical components as well as the upper-
limb capabilities of monkeys have a close correspondence to those
of humans and this has motivated many motor control experi-
ments. The study of how motor cortical activity is related to arm
movement began with the development of the behaving monkey
paradigm in the 1960s (45). These initial experiments were re-
stricted to single-joint movement. With the introduction of less-
restricted, whole-arm movement (1), it has become clear that
motor cortical firing rates are modulated in association with
multiple movement parameters (46–50). This multiplexing is a

cardinal feature of distributed systems, with parameter represen-
tation dispersed over a large number of elements (51). Individual
parameters may vary in their representation strength within a
single neuron’s firing rate, but even weak effects on firing rate can
be decoded if they occur across a large number of neurons. Pop-
ulation algorithms capable of extracting these encoded parameters
are now being used in brain-controlled interface paradigms to
provide robust control of prosthetic devices. The control signal
used for this neural prosthetic paradigm, although robust and ac-
curate, has been limited to kinematic parameters governing the
velocity of the arm, orientation of the hand, and shaping of the
fingers (4). In order to extend this paradigm to practical interac-
tions with everyday objects, both the force exerted on those objects
and their displacement must be controlled simultaneously.
Impedance control theory (52) provides a biologically plausible

framework in which force and displacement signals are generated
in parallel. Impedance signaling can be used to control the force
applied to an object when there is displacement of the hand and/or
object taking place as contact between the two occurs. Impor-
tantly, the mechanical impedance of the hand allows it to yield to
the near-instantaneous changes in object–hand force taking place
upon initial contact. Feedback-dependent systems, especially those
used in robots, often cannot respond quickly enough when actu-
ators collide with an object, which can lead to an array of problems
(53, 54). Biological systems with adjustable mechanical impedance,
such as that afforded by muscle coactivation, make it possible for
mechanical impedance to play a role in achieving a desired action
goal. For instance, by presetting the impedance of the hand and
fingers, the hand may quickly conform to the shape of an object
upon initial contact. Similarly, proper mechanical impedance is
essential for agile in-hand manipulation. To achieve this type
of prosthetic control using brain-controlled interfaces, extracting
impedance signals will be essential.
As an initial study of impedance signaling, we used a ballistic-

release paradigm that encouraged subjects to set the muscle
activity of their arms so that when moved suddenly, they would
act as virtual springs, set with an impedance to arrest the arm in a
target zone. After showing that human subjects used this spring
strategy, monkeys performed the same task. Motor cortical ac-
tivity was then fit with a cosine tuning function for stiffness.
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Fig. 7. Extracted stiffness tuned neurons recorded simultaneously in a single recording session were used in an OLE stiffness extraction algorithm to create
population vectors. The population vectors had dimensions of force and displacement. Predicted stiffness was taken as the ratio of these dimensions, force–
displacement. Results from all 10 sessions are shown for each monkey. The overall correlation coefficient of the combined data set for monkey S was r = 0.89
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Much of the unitary activity could be fit with this model, showing
that stiffness was indeed encoded in motor cortical activity. This
activity, when decoded with a population extraction algorithm,
was shown to faithfully represent the stiffness used across ex-
perimental conditions to achieve the task.
The behaving primate model has allowed us to develop algo-

rithms to extract detailed movement parameters. We have not yet
fully described the functional mechanisms that the motor system
uses to transform and transmit the information acting as input to
the motor cortex, nor is it yet clear how the firing rates of these
neurons act to effect movement. Nonetheless, recognition of these
movement parameters helps to formulate overall control theories

of how our motor system allows us to perform the elaborate ma-
nipulation of objects that is characteristic of human behavior. The
strategy of using the behaving primate model to elucidate basic
science correlates of volitional action has been, and will continue
to be, essential for developing brain-based therapies for movement
disorders. Furthermore, as we continue to investigate the mecha-
nisms for planning and control of active manipulation, results from
this research can provide a rigorous framework for the study of
cognitive functioning (55–58), with the prospect of greater insight
into high-order human thought and action.
The data used in Figs. 4–7 are available at https://knb.

ecoinformatics.org/view/doi:10.5063/F14Q7SBK.
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